
SSoLDAC 2023, Matera

Queries on the Duplex house
In this assignment, we will be doing some queries in LD-BIM
(https://ld-bim.web.app). We will use the Duplex House demo model.

SPARQL 101 (Cheat Sheet)

Let’s first do a simple query where we ask for all instances of bot:Space.

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX bot: <https://w3id.org/bot#>

SELECT ?space
WHERE{
 ?space rdf:type bot:Space .
}

Have a look at the query above. We can divide it into three areas of interest:

● First, we have a set of prefixes. A prefix is an abbreviation used in the Turtle
RDF serialization to simplify query writing. Remember that everything in
Linked Data is identified with HTTP URIs i.e. web addresses? Providing the
information PREFIX bot: <https://w3id.org/bot#> tells the interpreter that every
time it sees bot: it is an abbreviation for that URI. bot:Space is therefore
interpreted as <https://w3id.org/bot#Space>. It is also possible to write the full
URIs in <triangle brackets>, so the below query will yield the same results.

SELECT ?space
WHERE{
 ?space <http://www.w3.org/1999/02/22-rdf-syntax-ns#type> <https://w3id.org/bot#Space> .
}

● Next part is the SELECT clause which defines what we wish to return.
SELECT will return a table with all the variables listed. There are also other
clauses like CONSTRUCT, ASK, INSERT and DELETE.

● The last part is the WHERE clause. Here we define a triple pattern that should
be matched. Anything prefixed with a ? (questionmark) indicates a variable,

Mads Holten Rasmussen

https://ld-bim.web.app
https://www.iro.umontreal.ca/~lapalme/ift6281/sparql-1_1-cheat-sheet.pdf
https://w3id.org/bot#Space
https://www.w3.org/TR/turtle/

SSoLDAC 2023, Matera

so the triple pattern “?anySubject ?anyRelationship ?anyObject” would return
everything in the graph since we only provide variables. This is typically not
what we want, so the result can be restricted by replacing one of the three
variables with a constant. In the above example, the relationship is restricted
to rdf:type (what relates an instance with its type) and the object is limited to
bot:Space. Therefore, ?space will bind to all instances of bot:Space in the
graph.

When we execute the query in LD-BIM we get a list of space URIs prefixed with inst:
which in LD-BIM is used for all triples in the instance namespace. Try clicking the
eye icon that shows up next to the space column header when hovering. This will
highlight all spaces in random colours as shown in the image below. Now toggle the
“Append new” setting, hover a row in the results list and click the eye at an individual
space. This will highlight that single space. Click another space and that space will
be highlighted. Toggle “Append new” on and as you continue to click spaces, they
are appended to the scene. You can also click on an empty place in the scene to
reset colors.

Now let’s simplify the query a bit by replacing rdf:type with a like shown below. This
is syntactic sugar in Turtle and SPARQL that means the same thing. The bot prefix is
still necessary but throughout this assignment we leave out prefixes that have
already been specified previously to save space.

SELECT ?space
WHERE{
 ?space a bot:Space .
}

Mads Holten Rasmussen

SSoLDAC 2023, Matera

Returning more variables

Let’s remove one of the constants in the query and replace it with a variable so we
can return more results.

SELECT ?something ?class
WHERE{
 ?something a ?class .
}

What we are basically saying here is that we wish to return anything and the class it
belongs to. “a” is used to relate an instance to its class, so this makes sense. We
explicitly state the names of the classes, but we could also just use an asterisk like
shown below to return all results.

SELECT *
WHERE{
 ?something a ?class .
}

Extending the pattern

We are not reduced to only using single-line triple pattern matches. The dot at the
end of the line indicates that the triple is over, and we are free to add another
condition that should also be met. We could for example ask for all spaces including
all relationships starting from a space and going to other objects. Notice that we
must use the same variable name to bind to all the spaces that were retrieved from
the first pattern match.

SELECT *
WHERE{
 ?space a bot:Space .
 ?space ?property ?value .
}

This way we can traverse the graph and discover new information. We also extend
the SELECT clause to only return unique properties. This way we will know all the
different relationships that exist on spaces in our dataset.
This is a useful query pattern that can be used at any step when defining your full
query. It can be used at any point to ask the question “where can I get from here”
since it reveals all outgoing relationships from the current position (in this case all
outgoing relationships from any space).

SELECT DISTINCT ?property
WHERE{
 ?space a bot:Space .
 ?space ?property ?value .
}

Mads Holten Rasmussen

SSoLDAC 2023, Matera

Semicolon and comma

A dot indicates that a triple is over, but we can also use semicolon which means that
the subject of the previous triple is still valid for the next triple. The below query is
therefore equal to the one above.

SELECT DISTINCT ?property
WHERE{
 ?space a bot:Space ;
 ?property ?value .
}

Using a colon indicates that both the subject and the predicate should be repeated.
For example, the query below will return all instance of bot:Element and will further
return the other classes that the element belongs to.

SELECT *
WHERE{
 ?element a bot:Element , ?class .
}

Limiting results

The above query will also bind the bot:Element class to the ?class variable since it
also matches the pattern. We might, however, not be interested in this. We can use a
filter to leave these out from the returned results.

SELECT *
WHERE{
 ?element a bot:Element , ?class .
 FILTER(?class != bot:Element)
}

Construct queries

A construct query returns the sub-graph in a graph-like data structure like Turtle or
JSON-LD. The sub-graph contains only the triples that are matched by the WHERE
clause. The query below will return all instances of bot:Space and all their
relationships to all instances of bot:Element. Notice that LD-BIM shows the results in
a graph.

CONSTRUCT
WHERE{
 ?space a bot:Space ;
 ?someRelationship ?element .
 ?element a bot:Element .
}

Mads Holten Rasmussen

SSoLDAC 2023, Matera

When you hover a node in that graph that represents an object in the IFC model that
element will be highlighted. You can also click the Raw button to get the results in
JSON-LD serialized RDF.

In the construct clause itself it is also possible to limit the results. We could for
example omit the relationships to the classes and only return the instances and their
relationships. When you use such advanced features in the WHERE clause it is no
longer possible to just write CONSTRUCT. You also need to explicitly specify what
should be returned.

CONSTRUCT{
 ?space ?someRelationship ?element .
}
WHERE{
 ?space a bot:Space ;
 ?someRelationship ?element .
 ?element a bot:Element .
}

Aggregation functions

Let’s run a simple aggregation function that counts the number of spaces in the
graph. What we would like to find is the number of spaces per storey. We do this by
querying relationships between storeys and spaces and grouping them by storey. In
the SELECT clause we use the aggregate function COUNT() to count the number of
space occurrences per storey and finally we bind the result to a new variable
?spaceCount.

SELECT ?storey (COUNT(?space) AS ?spaceCount)
WHERE{
 ?storey a bot:Storey ;
 bot:hasSpace ?space .
 ?space a bot:Space .
} GROUP BY ?storey

Mads Holten Rasmussen

SSoLDAC 2023, Matera

At the current state LD-BIM uses a SPARQL implementation based on N3/Comunica
which is not so stable so you might have to execute the query a few times. Try
refreshing the page, load the model again and run the same query. That usually
works!

GROUP_CONCAT is another aggregate query that can be used to return all the
individual spaces at each group. Again, the implementation is not strong in these
advanced query patterns. It will likely change in near feature since we are
considering moving to Oxigraph which is also faster (see preliminary test results).

SELECT ?storey (GROUP_CONCAT(?space) AS ?spaces)
WHERE{
 ?storey a bot:Storey ;
 bot:hasSpace ?space .
 ?space a bot:Space .
} GROUP BY ?storey

Querying for space’s adjacent elements seems to be more stable and the concept is
the same. So if you can’t get the above query to work, try this:

SELECT ?space (GROUP_CONCAT(?adjEl) AS ?adjacent)
WHERE {

?space a bot:Space ;
bot:adjacentElement ?adjEl

} GROUP BY ?space ?area

LD-BIM understands that the adjacent-column contains a list of elements, so try first
clicking the eye to color a space in the scene and then afterwards click the eye in the
adjacent column on the same row. Try that with a few spaces and toggle “Append
new” in-between to remove the previous results from the scene.

Mads Holten Rasmussen

https://madsholten.github.io/oxigraph-test/tests/n3_vs_oxigraph/

SSoLDAC 2023, Matera

Well-known text (advanced)

LD-BIM can also visualize Well-known Text geometries like Points, linestrings and
polygons from the result table. In this example, we are building quite a complex
query.

We are looking at a particular space that we know exists in the Duplex house
(inst:0BTBFw6f90Nfh9rP1dl_3A) and we use a BIND clause to bind this space URI
to a variable ?space. This approach is clean since it puts the variable in the very top
of the query making it easier to understand. If you wish to do the same with another
space, simply replace the URI.

We are then looking for space boundaries, which are in LD-BIM modeled as
instances of bot:Interface. An interface is related to the interfacing objects that are
interfacing using the bot:interfaceOf relationship. We are looking for relationships to
spaces and elements, so we bind to representative variables. For the interface, we
are also interested in the 3D vertices and we would like to restrict the results to only
vertical space boundaries. We further restrict the element variable to only hold
instances of bot:Element.

The last thing we do is that we use a BIND clause to build our WKT text strings in the
form POLYGON Z(x1 y1 z1, xn yn zn) and bind them to the variable
?boundaryGeometry.

PREFIX ex: <https://example.com/>
PREFIX kg: <https://w3id.org/kobl/geometry#>
PREFIX bot: <https://w3id.org/bot#>
PREFIX inst: <https://web-bim/resources/>

SELECT DISTINCT ?boundary ?boundaryGeometry ?element
WHERE{

BIND(inst:0BTBFw6f90Nfh9rP1dl_3A AS ?space)

?boundary bot:interfaceOf ?space , ?element ;
kg:vertices3D ?ver ;
ex:isVertical true .

?element a bot:Element .
BIND(CONCAT("POLYGON Z (", STR(?ver), ")") AS ?boundaryGeometry)

}

When you have executed the query, try first showing the full element column by
clicking the eye.

Mads Holten Rasmussen

https://en.wikipedia.org/wiki/Well-known_text_representation_of_geometry
https://w3id.org/bot#Interface
https://w3id.org/bot#interfaceOf
https://w3id.org/bot#Element

SSoLDAC 2023, Matera

You will see all elements that are adjacent to the space and you will probably
understand why we need space boundaries if we wish to address only the part of the
element that is interfacing with the space. Now deselect “Append new” and show the
boundaryGeometry column.

You can also click the individual elements and their related boundary one by one to
investigate the results.

Now try replacing inst:0BTBFw6f90Nfh9rP1dl_3A with the URI of another space and
see the results.

Lastly, try changing the “POLYGON Z” part of the BIND clause to “LINESTRING Z” to
watch the results as linestrings instead of surfaces.

Mads Holten Rasmussen

SSoLDAC 2023, Matera

Try yourself

With what you have now learned, try formulating some queries on your own.
Remember the trick you learned where you ask for outgoing relationships? Try that!
You can also try clicking the “query resource” button in a cell like one of the space
boundaries for example to create a query that will return everything we know about
that resource. You can also try the Flow Systems demo model that contains different
relationships like “Pipe supplies fluid to Fitting” and “System has component Pipe”.

Thoughts and perspectives

What you have been querying is the information that we have decided to extract from
the IFC-file. It is also possible to get a full conversion of the IFC to ifcOWL, but this
data structure is a 1-1 representation of how it is modeled in the IFC which is really
complicated to query. We just didn’t want to scare you away! Also, the LBD
community is arguing that this complex representation is way too complex and
carries on too much legacy, so after all maybe we don’t even need it in the future?
LBD uses a modular approach where different domains can model their individual
perspectives and bring them together as a federated whole and one might argue that
this scales better.

You might have stumbled upon the fact that all properties are put in the instance
namespace. This was a modeling decision made when building the IFC parser for
properties. It would make sense to use the IFC namespace for all properties that are
from PSets issued by BuildingSMART and then the rest of them could be described
in the instance namespace.

Mads Holten Rasmussen

https://technical.buildingsmart.org/standards/ifc/ifc-formats/ifcowl/

